User:Dclark57/Canfield Ocean

From Wikipedia, the free encyclopedia
Diagram of the mechanisms hypothesized to have formed euxinic conditions in the deep ocean during the Boring Billion.

The Canfield Ocean model was proposed by geochemist Donald Canfield to explain the chemical composition of the ocean in the middle to late Proterozoic.

In a paper published in 1998 in Nature,[1] Canfield argued that the deep ocean was anoxic and sulfidic (also known as euxinic) during the time of the Boring Billion (1.8 Ga - 0.8 Ga), and that those conditions ceased the mineral deposition of iron-rich banded iron formations (BIF) in ocean sediments. Prior to the Canfield Ocean theory, it was believed that the ocean became oxygenated during the Great Oxygenation Event (GOE) (~2.46 Ga).[2]

Formation[edit]

By the end of the GOE, oxygen levels in the atmosphere were as high as 10% of present-day levels.[3] Under these conditions, the deep ocean would have likely remained anoxic. However, the atmosphere had enough oxygen to facilitate weathering of sulfate-containing terrestrial minerals, delivering sulfate (SO42-) to the ocean through runoff.[4] Sulfate was then reduced by microorganisms to produce sulfide (S2-). By 1.8 Ga (billion years ago), Sulfide concentrations were high enough to precipitate iron out of the deep ocean by binding with iron to form pyrite (FeS2), which effectively ended the formation of BIFs.[1]

Evidence[edit]

Most evidence for euxinic ocean conditions comes from stable isotope ratios found in sediment records. δ34S, the measurement of 34S and 32S concentrations compared to a standard, were found to be around 40‰ during the Boring Billion.[4] A δ34S value higher than 45‰ would be evidence of a fully oxygenated ocean, while a δ34S value lower than 5‰ would imply an anoxic atmosphere.[4]

In the paper, Canfield also used a box model to explain how intermediate oceans, or oceans that are only partially oxidized, would have formed.[1] The model shows that, assuming nutrient levels were anywhere near present-day levels, atmospheric oxygen levels would have needed to be much higher at the end of the GOE in order to fully oxygenate the ocean.

Scientific Dispute[edit]

[will add things here if/when I find anything]

See also[edit]

References[edit]

  1. ^ a b c Canfield, D. E. (1998). "A new model for Proterozoic ocean chemistry". Nature. 396 (6710): 450–453. Bibcode:1998Natur.396..450C. doi:10.1038/24839. S2CID 4414140.
  2. ^ Cloud, P. (1972-06-01). "A working model of the primitive Earth". American Journal of Science. 272 (6): 537–548. doi:10.2475/ajs.272.6.537. ISSN 0002-9599.
  3. ^ Ossa Ossa, Frantz; Spangenberg, Jorge E.; Bekker, Andrey; König, Stephan; Stüeken, Eva E.; Hofmann, Axel; Poulton, Simon W.; Yierpan, Aierken; Varas-Reus, Maria I.; Eickmann, Benjamin; Andersen, Morten B.; Schoenberg, Ronny (2022). "Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event". Earth and Planetary Science Letters. 594: 117716. doi:10.1016/j.epsl.2022.117716.
  4. ^ a b c Anbar, A. D.; Knoll, A. H. (2002-08-16). "Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?". Science. 297 (5584): 1137–1142. doi:10.1126/science.1069651. ISSN 0036-8075.